STABILIZATION OF METHYL CATIONS BY SECOND ROW SUBSTITUENTS

Timothy Clark and Paul von Ragué Schleyer Institut für Organische Chemie der Friedrich-Alexander Universität Erlangen-Nürnberg, D-8520 Erlangen, Federal Republic of Germany.

<u>Abstract</u>. With the exception of PH_2 (<u>vs</u>. NH_2) all second row substituents, Na, MgH, AlH₂, SiH₃, SH and Cl, stabilize methyl cations more effectively than their first row counterparts.

The effect of PH_2 , SH, and Cl substituents on the stability of methyl cations have been compared with NH_2 , OH, and F.¹⁻³ The same is true of $SiH_3 \underline{vs}$. CH_3 .⁴ The effects of the more electropositive elements of the second row have not yet been considered. We have therefore carried out an <u>ab initio</u> study of the CH_2X^+ cations, where X = Na, MgH and AlH_2 . In order to obtain a complete picture at a uniform level of theory and to estimate stabilization energies not considered earlier, ¹⁻³ we have included all second row substituents. This complements a similar study involving first row groups.⁴ Calculations were performed using the Gaussian 70⁵ and Gaussian 76⁶ series of programs with full geometry optimization⁷ at both the minimal STO-36⁸ and STO-36^{*9} basis set levels. The latter includes a set of d-orbitals on the second row atoms. These calculations are designated STO-3G//STO-3G and STO-36^{*}//STO-36^{*}, respectively. The results are presented in the Table.

The three effects contributing to the stabilization energies (defined in the Table, footnote a), σ -donation, π -donation, and hyperconjugation, have been discussed for substituents of the first period⁴ so that we can now compare first and second row substituent effects directly within this interprative framework.

<u> σ -Donation</u>: All elements of the second period of eight, except chlorine, are more electropositive than carbon.¹⁰ The sigma stabilizing effect⁴ is therefore superimposed on the other stabilizing factors for most of the second row substituents. Surprisingly, the sigma stabilization in CH₂Na⁺ (130 to 140 kcal mol⁻¹) is larger than that in CH₂Li⁺ (91.3 kcal mol⁻¹ at STO-3G),⁴ despite the similar electronegativities of these metals.¹⁰ MgH and AlH₂ (STO-3G stabilization energies 75 and 56 kcal mol⁻¹, respectively) are better able to stabilize the cationic center than are BeH and BH₂ (26.7 and 30.7 kcal mol⁻¹, respectively)⁴; the second row elements are more electropositive. SiH₃ similarly is 4 kcal mol¹ more effective than CH₃ (STO-3G).⁴ The large stabilization energies found for CH₂Na⁺ and CH₂MgH⁺ have important consequences. We have recently proposed that lithiomethyl cation, CH₂Li⁺, and its derivatives may be intermediates in the reaction of lithium carbenoids.¹¹ The high thermodynamic stability of the sodium and magnesium metallocarbenium ions suggests that carbenoids involving these metals may react similarly.

<u>Hyperconjugation</u>: The rotation barrier in $CH_2AlH_2^+$ is calculated to be 5.4 kcal mol⁻¹ at STO-3G and 4.8 kcal mol⁻¹ at STO-3G^{*}. The STO-3G barrier for $CH_2BH_2^+$ is 18.7 kcal mol⁻¹.⁴ Hyperconjugative electron donation, which only takes place in the perpendicular form, is therefore a great deal weaker for AlH bonds than for BH. The greater length of the CAl bond and the polarization of the AlH bonds towards H serve to weaken the hyperconjugative effect. Similarly, CH_3 hyperconjugates better than SiH_3 .⁴ In general, second row substituents should not hyperconjugate as well as their first row analogs.

<u>n-Donation</u>: Bernardi <u>et al.</u>² have observed the order of n-donation to CH_2^+ center to be P> S> N> 0> Cl> F. Our calculations agree, but also point out other factors which affect the overall stabilization of CH_2X^+ ions. PH_2 is clearly a very strong n-donor, the rotation barrier from the all-planar $CH_2PH_2^+$ to the C_{2V} perpendicular form, with the C-PH₂ moiety held planar, is 97.6 kcal mol⁻¹ at STO-3G, and 115.9 kcal mol⁻¹ at STO-3G^{*}. This corresponds closely to the n-stabilization energy. The energy difference between the perpendicular C_{2V} species and the $C_{\rm S}$ form, in which the PH₂ group is allowed to pyramidalize, is, however, 71.2 kcal mol⁻¹ (STO-3G; 90.1 kcal mol⁻¹ at STO-3G^{*}).¹² The energy required to make the C-PH₂ moiety planar reduces the effective n-stabilization. PH₂ is therefore actually a weaker stabilizing group than NH₂ (stabilization energies 93.4⁴ (STO-3G) and 55-62 kcal mol⁻¹ for $CH_2NH_2^+$ and $CH_2PH_2^+$ respectively) despite its inherently superior n-donating ability. Experimentally, stabilization by a N(CH₃)₂ group is 27 kcal mol⁻¹ better than by P(CH₃)₂.¹³ The rotation barrier in CH_2SH^+ is calculated to be 44.8 (STO-3G), 53.8 (STO-3G^{*} and 36.5¹ (4-31G) kcal mol⁻¹, the stabilization energy for the planar form (67.6 (STO-3G) or 84.4 (STO-3G^{*}) kcal mol⁻¹) is somewhat larger than that (66.0 kcal mol⁻¹(STO-3G))⁴ obtained for CH_2OH^+ . This confirms SH to be a better n-donor than OH to CH_2^+ .¹⁻³ The experimental stabilization energies are OH = 60 kcal mol⁻¹ and SH = 64 kcal mol⁻¹.¹³ As with CH_2F^+ ,⁹ the results for CH_2CI^+ are likely to be unreliable using minimal basis sets, so that conclusions as to the relative π -donor strengths of the two halogens are uncertain at the theoretical levels employed here. The experimental values are 26 kcal mol⁻¹ and 32 kcal mol⁻¹ for F and Cl, respectively.¹³

<u>Binding Energies</u>: As for the first row groups,⁴ the binding energies (see Table, footnote b) of electropositive substituents are high, so that $NaCH_2^+$, $HMgCH_2^+$, $H_2AICH_2^+$ are better regarded as metallocarbenium ions, rather than carbene complexes $(CH_2: \rightarrow M^+)$. The C-Si bond in $H_3SiCH_2^+$ is indicated to be very strong. This ion and its much more stable isomer, $CH_3SiH_2^+$, have been discussed previously.⁴,¹⁴

Table: TOTAL ENERGIES (a.u.), STABILIZATION ENERGIES (ΔH_{stab}), AND BINDING ENERGIES FOR $CH_2 X^{\dagger}$ CATIONS.

	STO-3G//STO-3G			STO-3G */ /STO-3G *		
Ion and Geometry	Total Energy	^{∆H} stab ^{a,c}	Binding Energy ^b		∆H _{stab} a,c	Binding Energy ^b ,d
C-Na	-198.21635	-140.0	-37.3	-198.21925	-133.9	-39.1
Ç <mark>+</mark> Mg−	-236.00020	-75.0	-71.6	-236.00452	-64.3	-72.8
	-278.46359	-50.2	-71.0	-278.49399	-48.1	-81.3
	-278.47215	-55.5	-76.4	-278.50158	-52.9	-86.0
∵c ⁺ _si	-325.61965	-34.7	-100.6	-325.67700	-33.2	-109.4
C ⁺ −P	-376.36560	-55.9	-	-376.42573	-61.2	-
jjet−p	-376.21010	+41.7	-	-376.24106	+54.7	-
₩C ⁺ P	-376.32361	-29.6	-	-376.38459	-35.4	-
<mark>⊭c⁺-s</mark> ⊲	-432.0639	-67.6	-	-432.11621	-84.4	-
j_c+_s	-431.98497	-22.8	-	-432.03042	-30.6	-
Ç—CI	-492.78345	-4.8	-	-492.82584	-20.1	-

^a The energy (kcal mol⁻¹) for the reaction $CH_3^+ + CH_3 X \rightarrow XCH_2^+ + CH_4$.

b The energy (kcal mol⁻¹) for the reaction CH₂ (singlet) + X⁺→ XCH₂⁺.
c STO-3G//STO-3G and STO-3G^{*}//STO-3G^{*} energies for CH₃X are taken from ref. 9 and from T.W. Bentley, J. Chandrasekhar and P. v. R. Schleyer, unpublished.

^d STO-3G//STO-3G and STO-3G^{*}//STO-3G^{*} energies for X⁺ are: Na⁺ -159.78462 and -159.78462, MgH⁺ -197.51377 and -197.51626, AlH₂⁺ -239.08706 and -239.99215 SiH₃⁺ -287.08706¹⁴ and -287.13043. <u>Acknowledgments</u>: This work was supported by the Fonds der Chemischen Industrie. We thank Dr. Y. Apeloig for helpful discussions and the staff of the Regionales Rechenzentrum Erlangen for their co-operation.

References

- F. Bernardi, I. G. Csizmadia, H. B. Schlegel, and S. Wolfe, Can. J. Chem., <u>53</u>, 1144 (1975).
- F. Bernardi, I. G. Csizmadia, and N. D. Epiotis, <u>Tetrahedron</u>, <u>31</u>, 3085 (1975).
- F. Bernardi, A. Mangini, N. D. Epiotis, J. R. Larson, and S. Shaik, J. Am. Chem. Soc., <u>99</u>, 7465 (1977).
- 4. Y. Apeloig, P. v. R. Schleyer, and J. A. Pople, <u>J. Am. Chem. Soc.</u>, <u>99</u>, 1291 (1977).
- W. J. Hehre, W. A. Lathan, R. Ditchfield, M. D. Newton, and J. A. Pople, QCPE Program No. 236 Indiana University, Bloomington, Indiana (1973).
- J. S. Binkley, R. A. Whiteside, P. C. Hariharan, R. Seeger, J. A. Pople, W. J. Hehre, and M. D. Newton, QCPE Program No. 368, Indiana University, Bloomington, Indiana (1979).
- The STO-3G and STO-3G^{*} optimum geometries for the CH₂X⁺ ions are available from the authors, and will be published subsequently.
- W. J. Hehre, R. F. Stewart, and J. A. Pople, <u>J. Chem. Phys.</u>, <u>51</u>, 2769 (1970).
- J. B. Collins, P. v. R. Schleyer, J. S. Binkley, and J. A. Pople, J. Chem. Phys., <u>64</u>, 5142 (1976).
- See F. A. Cotton and G. Wilkinson, "Advanced Inorganic Chemistry", third edition, Wiley-Interscience, New York, 1972, p. 115.
- 11. T. Clark and P. v. R. Schleyer, J. C. S. Chem. Comm., in press.
- For a discussion of inversion barriers in AH₃ molecules see W. Cherry and N. D. Epiotis, <u>J. Am. Chem. Soc.</u>, <u>98</u>, 1135 (1976).
- 13. R. W. Taft, R. H. Martin and F. W. Lampe, <u>J. Am. Chem. Soc.</u>, <u>87</u> 2490 (1965)
- 14. Y. Apeloig and P. v. R. Schleyer, Tetrahedron Lett., 4647 (1977).

(Received in Germany 20 September 1979)